Abstract

Formation of interfacial nanoscale voids in Al during room-temperature caustic corrosion was characterized by positron annihilation spectroscopy (PAS) and compared with measurements of deuterium absorption using secondary ion mass spectrometry (SIMS). The hypothesis was investigated that voids are created from vacancy-hydrogen (Vac-H) defects introduced during corrosion. Evidence for both mobile and immobile forms of absorbed hydrogen was obtained, the latter present within distances of 50 nm from the metal-oxide interface, where voids were also found. During corrosion, the immobile hydrogen was found only during discrete 1-2 min intervals of time separated by periods of 1-2 min when it was not present. Model calculations suggested that this transient behavior is consistent with repeated nucleation and dissolution of clusters of Vac-H defects. Only some aspects of the time-dependence of the void concentration from PAS corresponded with that of absorbed hydrogen; the former is believed to be influenced by metallic impurities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.