Abstract

High-purity aluminum foils were examined using positron annihilation spectroscopy (PAS) after dissolution for various times in 1 M NaOH at room temperature. Measurements of the S and W shape parameters of the annihilation photopeak at 511 keV show the presence of voids of at least nanometer dimension located at the metal-oxide film interface. The large S parameter suggests that the metallic surface of the void is free of oxide. Voids are found in as-received foils and are also produced by dissolution in NaOH, evidently by a solid-state interfacial process. Atomic force microscopy (AFM) images of NaOH-dissolved foils, after stripping the surface oxide film in chromic-phosphoric acid bath, reveal cavities on the order of 100 nm size. The average cavity depth is in quantitative agreement with the PAS-derived thickness of the interfacial void-containing layer, and the dissolution time dependence of the defect layer S parameter closely parallels that of the fractional coverage of the foil surface by cavities; thus, the cavities are believed to be interfacial voids created along with those detected by PAS. The cavity distribution on the surface closely resembles that of corrosion pits formed by anodic etching in 1 M HCl, thereby suggesting that the interfacial voids revealed by AFM serve as sites for pit initiation. © 2001 The Electrochemical Society. All rights reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.