Abstract

Hydrogels are widely used for tissue engineering applications to support cellular growth, yet the tightly woven structure often restricts cell infiltration and expansion. Consequently, granular hydrogels with microporous architectures have emerged as a new class of biomaterial. Particularly, the development of microporous annealed particle (MAP) hydrogel scaffolds has shown improved stability and integration with host tissue. However, the predominant use of spherically shaped particles limits scaffold porosity, potentially limiting the level of cell infiltration. Here, a novel microporous annealed crescent-shaped particle (MAC) scaffold that is predicted to have improved porosity and pore interconnectivity in silico is presented. With microfluidic fabrication, tunable cavity sizes that optimize interstitial void space features are achieved. In vitro, cells incorporated into MAC scaffolds form extensive 3D multicellular networks. In vivo, the injectable MAC scaffold significantly enhances cell infiltration compared to spherical MAP scaffolds, resulting in increased numbers of myofibroblasts and leukocytes present within the gel without relying on external biomolecular chemoattractants. The results shed light on the critical role of particle shape in cell recruitment, laying the foundation for MAC scaffolds as a next-generation granular hydrogel for diverse tissue engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.