Abstract

Repair of peripheral nerve crush injury remains a major clinical challenge. Currently, oral or intravenous neurotrophic drugs are the main treatment for peripheral nerve crush injury; however, this repair process is slow, and the final effect may be uncertain. The current study aimed at developing an injectable hydrogel with vascular endothelial growth factor (VEGF)-mimetic peptide (QK)-encapsulated nanoliposomes (QK-NLs@Gel) for sustainable drug release that creates an appropriate microenvironment for nerve regeneration. The QK-encapsulated nanoliposomes (QK-NLs) could facilitate the proliferation, migration, and tube formation capacities of human umbilical vein endothelial cells through the VEGF signaling pathway. The QK-NLs@Gel hydrogel encapsulated with QK-NLs showed enhanced physical properties and appropriate biocompatibility in vitro. Thereafter, the QK-NLs@Gel hydrogel was directly injected into the site of peripheral nerve crush injury in a rat model, where it enhanced revascularization and promoted the M2-polarization of the macrophages, thus providing an optimized microenvironment for nerve regeneration. At four weeks post-surgery, the QK-NLs@Gel injected rats exhibited enhanced axon regeneration, remyelination, and better functional recovery in comparison with other groups in vivo. Overall, these findings demonstrate that the composite hydrogel could promote a multicellular pro-regenerative microenvironment at the peripheral nerve injury site, thus revealing great potential for peripheral nerve restoration. STATEMENT OF SIGNIFICANCE: Peripheral nerve injury (PNI) is a leading public health issue, and how to delivery beneficial drugs to injured sites efficiently is still a big challenge. In the current study, an injectable hydrogel with VEGF-mimetic peptide (QK)-encapsulated nanoliposomes (QK-NLs@Gel) was first developed and used to repair a rat crush injury model. Our results showed that QK-NLs promoted the proliferation, migration, and angiogenesis of HUVEC via VEGF signaling pathway in vitro. Furthermore, when injected to the crushed sites in vivo, the QK-NLs@Gel hydrogel could accelerate nerve repair through enhanced revascularization and M2-polarization of macrophages. These results collectively demonstrate that injection of QK-NLs@Gel hydrogel could create an appropriate microenvironment for peripheral nerve regeneration. This strategy is effective, economical, and convenient for clinical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call