Abstract

Bone cement based on magnesium phosphate has extremely favorable properties for its application as a bioactive bone substitute. However, further improvement is still expected due to difficult injectability and high brittleness. This paper reported the preparation of novel biocomposite cement, classified as dual-setting, obtained through ceramic hydration reaction and polymer cross-linking. Cement was composed of magnesium potassium phosphate and sodium alginate cross-linked with calcium carbonate and gluconolactone. The properties of the obtained composite material and the influence of sodium alginate modification on cement reaction were investigated. Our results indicated that proposed cements have several advantages compared to ceramic cement, like shortened curing time, diverse microstructure, increased wettability and biodegradability and improved paste cohesion and injectability. The magnesium phosphate cement with 1.50% sodium alginate obtained using a powder-to-liquid ratio of 2.5 g/mL and cross-linking ratio 90/120 of GDL/CC showed the most favorable properties, with no adverse effect on mechanical strength and osteoblasts cytocompatibility. Overall, our research suggested that this novel cement might have promising medical application prospects, especially in minimally invasive procedures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.