Abstract

The coiled shell of gastropods begins as a cap-shaped lens of organic and calcified material that covers the posterior dorsal side of the larva. During development the cap enlarges to cover the larval visceral mass. Marginal growth then produces the characteristic coiled shell. One model of the initiation of shell coiling in “archaeogastropods” requires that the shell remains flexible and uncalcified until after torsion, and that muscle contraction during torsion deforms the shell. We describe early shell calcification and tested this requirement of the model for the patellogastropod limpets Tectura scutum and Lottia digitalis, the trochids Calliostoma ligatum and Margarites pupillus and the abalone Haliotis kamtschatkana. We determined the stage of initial calcification by staining larvae with the fluorescent calcium marker calcein and observing them with bright field, crossed polarizing filter, and fluorescence microscopy. In T. scutum the earliest observable shell was calcified and calcium was sometimes detected even before the initial shell was visible. Larvae of the other species deposited a noncalcified matrix that was subsequently calcified, and in C. ligatum and M. pupillus this initial calcification was distinctly spotty. Shells of both patellogastropods and the abalone were demonstrably rigid prior to torsion while the shells of the trochids were not. These results suggest that shell coiling in patellogastropods and abalone is not initiated by contraction of the larval retractor muscle during torsion; in trochids this mechanism is possible. However, analysis of camera lucida drawings of pre- and post-torsional shells of T. scutum and C. ligatum did not detect shell shape changes during torsion. J. Morphol. 235:77–89, 1998. © 1998 Wiley-Liss, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call