Abstract

Nudibranchs, with their mesmerizing diversity and ecological significance, play crucial roles in marine ecosystems. Central to their feeding prowess is the radula, a chitinous structure with diverse morphologies adapted to prey preferences and feeding strategies. This study focuses on elucidating wear coping mechanisms in radular teeth of carnivorous molluscs, employing Dendronotus lacteus (Dendronotidae) and Flabellina affinis (Flabellinidae) as model species. Both species forage on hydrozoans. Through scanning electron microscopy, confocal laser scanning microscopy, nanoindentation, and energy-dispersive X-ray spectroscopy, the biomechanical and compositional properties of their teeth were analyzed. Notably, tooth coatings, composed of calcium (Ca) or silicon (Si) and high hardness and stiffness compared to the internal tooth structure, with varying mineral contents across tooth regions and ontogenetic zones, were found. The presence of the hard and stiff tooth coatings highlight their role in enhancing wear resistance. The heterogeneities in the autofluorescence patterns related to the distribution of Ca and Si of the coatings. Overall, this study provides into the biomechanical adaptations of nudibranch radular teeth, shedding light on the intricate interplay between tooth structure, elemental composition, and ecological function in marine molluscs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.