Abstract

The role of thyroid hormones in the expression of photosensitivity-photorefractoriness in female turkeys was investigated through the use of an antithyroidal agent, 6-n-propyl-2-thiouracil (PTU). In experiment 1, females held continuously from hatch on long day lengths (16L:8D; LD) and fed 0.1% PTU from 0 to 16 wk, began laying eggs at 26 wk of age, peaking at 75% hen-day egg production by 29 wk, whereas controls initiated lay 3 wk earlier but only achieved less than 50% hen-day egg production. In experiment 2, PTU treatment from 10 to 18 wk severely suppressed plasma triiodothyronine and thyroxine, as confirmed by RIA. Egg production of PTU and control hens held on LD from hatch began by 23 wk, with PTU hens reaching a substantially greater rate of lay than controls. Eggs were smaller initially in both treatments but exceeded 75 g by 28 wk. In experiment 3, recycled hens on short day lengths (8L:16D) received PTU for 2 wk before LD and 12 wk thereafter; a subset of these hens was killed after 48 h of LD for immunohistochemical analysis of fos-related antigen (FRA) expression in the tuberal hypothalamus as a marker of photoinduced neuronal activity. The PTU treatment completely forestalled egg production until its withdrawal; egg production then rose sharply to control levels before resuming, along with controls, a typical seasonal decline. The PTU treatment did not impair photoinduced FRA expression. Together, these results demonstrate the following: 1) that a period of pharmacological suppression of triiodothyronine and thyroxine can substitute for short day exposure in conferring photosensitivity on juvenile-aged turkeys (and is actually superior to short day exposure), 2) that reproductive development does not limit egg production of turkey hens photostimulated as young as approximately 20 wk of age, and 3) that effects of thyroid suppression on photostimulation lie downstream of photoinduced FRA expression. Taken together, these results suggest that there is ample physiological potential to substantially advance the age of photoinduced egg production in commercial flocks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call