Abstract
A strategy is proposed to initialize the EM algorithm in the multivariate Gaussian mixture context. It consists in randomly drawing, with a low computational cost in many situations, initial mixture parameters in an appropriate space including all possible EM trajectories. This space is simply defined by two relations between the two first empirical moments and the mixture parameters satisfied by any EM iteration. An experimental study on simulated and real data sets clearly shows that this strategy outperforms classical methods, since it has the nice property to widely explore local maxima of the likelihood function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.