Abstract

ABSTRACTThin layers of GaN have been deposited on 1μm thick MOVPE GaN(0001) thin film substrates using a novel vertical iodine vapor phase epitaxy system. The system features three concentric flow zones that separate the reactant gasses until they reach the substrate. Hydrogen flows through the innermost zone to deliver iodine vapor from an external bubbler to the molten Ga maintained at ∼1050°C and GaI to the substrate; high-purity ammonia flows through the outermost zone; nitrogen flows through the middle zone to prevent reaction between the growth species at the GaI nozzle. GaN growth was found to be a function of time, with decreasing concentration of iodine the likely cause of a decrease in growth rate at longer growth times. The step-and-terrace microstructure of the MOVPE seeds was replaced with a smooth morphology film after the shortest growth experiment. Star-shaped features with hexagonal symmetry grew on the surface with increasing growth time. These features became the tops of hexagonal pyramids; these pyramids grew competitively and dominated the final growth surface. The surface of the films grown for the longest period contained a step-and-terrace microstructure; however, the density of steps of was lower than that on the surface of underlying MOVPE substrate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.