Abstract
We study how FeO wüstite films on Ru(0001) grow by oxygen-assisted molecular beam epitaxy at elevated temperatures (800–900 K). The nucleation and growth of FeO islands are observed in real time by low-energy electron microscopy (LEEM). When the growth is performed in an oxygen pressure of 10−6 Torr, the islands are of bilayer thickness (Fe–O–Fe–O). In contrast, under a pressure of 10−8 Torr, the islands are a single FeO layer thick. We propose that the film thickness is controlled by the concentration of oxygen adsorbed on the Ru. More specifically, when monolayer growth increases the adsorbed oxygen concentration above a limiting value, its growth is suppressed. Increasing the temperature at a fixed oxygen pressure decreases the density of FeO islands. However, the nucleation density is not a monotonic function of oxygen pressure.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have