Abstract

Density functional theory calculations in conjunction with thermodynamic modeling were performed to examine the oxygen adsorption on a Ge(100) c(4 × 2) surface and the subsequent initial oxidation. For several possible adsorption sites, the adsorption energy of atomic oxygen as well as the atomic configuration and electronic properties of the adsorbed structure were examined. Then the effects of the surface coverage of oxygen from 1/64 to 1/4 monolayers on the adsorption energy were considered. Through the surface Gibbs free energy as a function of the temperature (T) and oxygen partial pressure (), the (T, ) surface stability diagram was predicted for the O/Ge(100) c(4 × 2) surface. The theoretical prediction well reproduced previous experimental observations and provides an insight to control the initial oxidation process of Ge surface with tuned T

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.