Abstract

PurposeThis paper aims to present assessment of models and simulation results used in the development process of flight stabilisation system that uses trim tabs for PZL-130 Orlik turboprop military trainer aircraft. Flight test of the system allowed to compare software and hardware simulation results with real flight recordings.Design/methodology/approachProposed flight stabilisation system was developed using modern techniques of model-based design, automatic code generation, software and hardware in the loop testing. The project reached flight testing stage which allowed to gather data to verify models and simulation results and asses their quality.FindingsResults of the comparison showed that the trim tab actuator model used in simulation can be improved by adding play. This reduced the difference between simulation and real flight system output – actuator angle. The influence of airloads on the flying actuator angle compared to hardware in the loop simulation in lab is less than ± 0.6°.Originality/valueProposed flight stabilisation system that uses trim tabs has several benefits over classic automatic flight system in terms of weight, energy consumption and structure simplicity and does not need aircraft primary control modification. It was developed using modern techniques of model-based design, automatic code generation and hardware in the loop simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call