Abstract

This paper describes the initial equilibrium problem for tension structures and presents a variety of methods for solving it. Two least squares techniques are presented in which the prestress distribution in the reference configuration is the problem unknown and the reference shape is explicitly defined by the designer. The existing force density method is shown to be a special case of the new assumed geometric stiffness method where both the reference shape and prestress distribution are unknowns in the solution. The iterative smoothing technique allows the designer to solve for the shape of the reference configuration in terms of an assumed prestress distribution. Also, an extension of the nonlinear displacement analysis method is presented which is based on a special slip formulation which accounts for relative movement between membranes and other structural components. Finally, the possibility of a combined solution process is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.