Abstract
Studies on a batch sorption process using wheat bran as a low cost sorbent was investigated to remove cadmium ions from aqueous solution. The influence of operational conditions such as contact time, cadmium initial concentration, sorbent mass, temperature, solution initial pH, agitation speed and ionic strength on the sorption kinetics of cadmium was studied. Pseudo-second-order model was evaluated using the six linear forms as well as the non-linear curve fitting analysis method. Modeling of kinetic results shows that sorption process is best described by the pseudo-second-order model using the non-linear method. The sorption of cadmium was found to be dependent on initial concentration, sorbent mass, solution pH, agitation speed, temperature, ionic strength and contact time. The value of activation energy (12.38 kJ mol −1) indicates that sorption has a low potential barrier corresponding to a physical process. Sorption equilibrium isotherms at different temperatures was determined and correlated with common isotherm equations such as Langmuir and Freundlich models. It was found that the Langmuir model appears to well fit the isotherm data but a worse correlation was obtained by the Freundlich model. The five Langmuir linear equations as well as the non-linear curve fitting analysis method were discussed. Results show that the non-linear method may be a better way to obtain the Langmuir parameters. Thermodynamic parameters such as Δ H°, Δ S° and Δ G° were calculated. These parameters indicate that the sorption of cadmium by wheat bran is a spontaneous process and physical in nature involving weak forces of attraction and is also endothermic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Hazardous Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.