Abstract
Abstract Based on a successful cloud-resolving simulation with the Weather Research and Forecasting Model, this study examines key processes that led to the early development of Hurricane Dolly (2008). The initial development of Dolly consisted of three stages: (i) an initial burst of convection; (ii) stratiform development, dry intrusion, and thermodynamic recovery; and (iii) reinvigoration of moist convection and rapid intensification. Advanced diagnosis of the simulation—including the use of vorticity budget analysis, contour frequency analysis diagrams, and two-dimensional spectral decomposition and filtering—suggests that the genesis of Dolly is essentially a “bottom-up” process. The enhancement of the low-level vorticity is mainly ascribed to the stretching effect, which converges the ambient vorticity through stretching enhanced by moist convection. In the rapid intensification stage, smaller-scale positive vorticity anomalies resulting from moist convection are wrapped into the storm center area under the influence of background convergent flow. The convergence and accompanying aggregation of vorticity anomalies project the vorticity into larger scales and finally lead to the spinup of the system-scale vortex. On the other hand, although there is apparent stratiform development in the inner-core areas of incipient storm after the initial burst of convection, little evidence is found to support the genesis of Dolly through downward extension of the midlevel vorticity, a key process in the “top-down” thinking.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have