Abstract

This paper is devoted to initial boundary value problems for quasi-linear symmetric hyperbolic systems in a domain with characteristic boundary. It extends the theory on linear symmetric hyperbolic systems established by Friedrichs to the nonlinear case. The concept on regular characteristics and dissipative boundary conditions are given for quasilinear hyperbolic systems. Under some assumptions, an existence theorem for such initial boundary value problems is obtained. The theorem can also be applied to the Euler system of compressible flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.