Abstract
These lecture notes accompany two classes given at the NRHEP2 school. In the first lecture I introduce the basic concepts used for analyzing well-posedness, that is the existence of a unique solution depending continuously on given data, of evolution partial differential equations. I show how strong hyperbolicity guarantees well-posedness of the initial value problem. Symmetric hyperbolic systems are shown to render the initial boundary value problem well-posed with maximally dissipative boundary conditions. I discuss the Laplace–Fourier method for analyzing the initial boundary value problem. Finally, I state how these notions extend to systems that are first-order in time and second-order in space. In the second lecture I discuss the effect that the gauge freedom of electromagnetism has on the PDE status of the initial value problem. I focus on gauge choices, strong-hyperbolicity and the construction of constraint preserving boundary conditions. I show that strongly hyperbolic pure gauges can be used to build strongly hyperbolic formulations. I examine which of these formulations is additionally symmetric hyperbolic and finally demonstrate that the system can be made boundary stable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.