Abstract
We discuss several topics related to the notion of strong hyperbolicity which are of interest in general relativity. After introducing the concept and showing its relevance we provide some covariant definitions of strong hyperbolicity. We then prove that if a system is strongly hyperbolic with respect to a given hypersurface, then it is also strongly hyperbolic with respect to any nearby surface. We then study for how much these hypersurfaces can be deformed and discuss then causality, namely what the maximal propagation speed in any given direction is. In contrast with the symmetric hyperbolic case, for which the proof of causality is geometrical and direct, relaying in energy estimates, the proof for general strongly hyperbolic systems is indirect for it is based in Holmgren's theorem. To show that the concept is needed in the area of general relativity we discuss two results for which the theory of symmetric hyperbolic systems shows to be insufficient. The first deals with the hyperbolicity analysis of systems which are second order in space derivatives; they include certain versions of the ADM and the BSSN families of equations. This analysis is considerably simplified by introducing pseudo-differential first-order evolution equations. Well-posedness for some members of the latter family systems is established by showing they satisfy the strong hyperbolicity property. Furthermore it is shown that many other systems of such families are only weakly hyperbolic, implying they should not be used for numerical modeling. The second result deals with systems having constraints. The question posed is which hyperbolicity properties, if any, are inherited from the original evolution system by the subsidiary system satisfied by the constraint quantities. The answer is that, subject to some condition on the constraints, if the evolution system is strongly hyperbolic then the subsidiary system is also strongly hyperbolic and the causality properties of both are identical.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.