Abstract

The Christoffel equation is derived for the propagation of plane harmonic waves in a generalized thermoelastic anisotropic (GTA) medium. Solving this equation for velocities implies the propagation of four attenuating waves in the medium. The same Christoffel equation is solved into a polynomial equation of degree eight. The roots of this equation define the vertical slownesses of the eight attenuating waves existing at a boundary of the medium. Incidence of inhomogeneous waves is considered at the boundary of the medium. A finite non-dimensional parameter defines the inhomogeneity of incident wave and is used to calculate its (complex) slowness vector. The reflected attenuating waves are identified with the values of vertical slowness. Procedure is explained to calculate the slowness vectors of the waves reflected from the boundary of the medium. The slowness vectors are used, further, to calculate the phase velocities, phase directions, directions and amounts of attenuations of the reflected waves. Numerical examples are considered to analyze the variations of these propagation characteristics with the inhomogeneity and propagation direction of incident wave. Incidence of each of the four types of waves is considered. Numerical example is also considered to study the propagation and attenuation of inhomogeneous waves in the unbounded medium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.