Abstract
We consider the energy bounds of inhomogeneous current states in doped antiferromagnetic insulators in the framework of the two-component Ginzburg-Landau model. Using the formulation of this model in terms of the gauge-invariant order parameters (the unit vector n, spin stiffness field ρ2, and particle momentum c), we show that this strongly correlated electron system involves a geometric small parameter that determines the degree of packing in the knots of filament manifolds of the order parameter distributions for the spin and charge degrees of freedom. We find that as the doping degree decreases, the filament density increases, resulting in a transition to an inhomogeneous current state with a free energy gain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.