Abstract

Inhibitory junctional currents (i.j.c.s) have been examined in locust muscle fibres to give properties of GABA-channels activated by the neurally released transmitter. A nerve-muscle preparation is described which has proved suitable for voltage-clamp analysis of inhibitory transmission. I.j.c.s were recorded from fibres in which excitatory synapses had been desensitized with glutamate, to abolish excitatory junctional currents. This procedure had no apparent effect on inhibitory channel properties. The time constant of decay of the i.j.c. was 7.7 +/- 0.3 ms, slightly exceeding the time constant of the membrane noise induced by externally applied GABA. Peak i.j.c. conductance decreased with hyperpolarization. I.j.c.s showed measurable fluctuations permitting an estimate of the mean size of the quantal events composing the i.j.c. Their mean size coincided with the spontaneously occurring miniature inhibitory junctional currents that could be directly recorded in some fibres. The inhibitory nerve-impulse released an average of 35 transmitter packets at sites distributed along the muscle fibre length. Since each m.i.j.c. produced a current of about 0.6 nA (at Vm = -80 mV, ECl = -40 mV) the single quantum of inhibitory transmitter opens 600-1000 postsynaptic chloride channels. This is roughly three to four times the number of channels opened by the excitatory transmitter packet at glutamate synapses in the same fibres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.