Abstract

Growth response from spores and vegetative cells of Clostridium botulinum strain 52A in peptone-yeast extract-glucose (PYEG) broth at two pH levels (5.55 or 5.85) containing sodium acid pyrophosphate (SAPP) (0, 0.2, 0.4%), NaCl (0, 1.25, 2.50%) and/or potassium sorbate (KS) (0, 0.13, 0.26%) was measured as the mean A630 nm of 20 tubes at 37°C. Additional treatments contained KC1 and MgCl2 (0, 1.25, 2.50%) without SAPP or KS. Growth ratios (GR = treatment/control) based on time to reach A630 = 0.35 were calculated to compare effects of additives on strain 52A. Growth from spores was affected significantly (p≤0.01) by pH level. KS and KS/pH interactions were also significant factors in growth from both spores and vegetative cells; SAPP/pH interactions were significant for cell growth, only. Combinations of SAPP (0.2, 0.4%) NaCl (0%) and KS (0.26%) were the most favorable treatments for delaying growth from spores or vegetative cells. NaCl (1.25, 2.50%) decreased antibotulinal effects produced by combinations of SAPP and KS. Elimination of NaCl enhanced antibotulinal effects. Formulations containing KC1 or MgCl2 (without SAPP and KS) at the same molarity as the NaCl in earlier treatments (0.21, 0.43) resulted in inhibition of growth from vegetative cells greater than growth from spores in the presence of MgCl2 at M = 0.43 (ionic strength = 1.29). This inhibition was more evident at pH 5.55 than pH 5.85. This study in a model system suggests ionic strength and/or chloride salt may be important considerations when manipulating formulations of additives designed to control C. botulinum growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call