Abstract

We have examined the biological effects of insulin-like growth factor-binding proteins (IGFBPs) on insulin-like growth factor (IGF)-activated glucose consumption in a BALB/c 3T3 subline. The method employed was a colorimetric measurement of glucose consumption, allowing the detection of changes from the initial glucose concentration in conditioned medium, following the addition of IGFs and IGFBPs. Human IGFBP-1, purified from amniotic fluid, inhibited IGF-activated glucose consumption, although it had no effect on insulin-activated glucose consumption. The median effective dose (ED50) of IGFBP-1 to cause inhibitory effects on IGF-activated glucose consumption was 100-200 micrograms/l and was similar for both IGF-I and IGF-II at a concentration of 1.0 microgram IGF/l. Therefore, at IGF concentrations of comparable activity, the inhibitory effects of IGFBP-1 were greater for IGF-I than for IGF-II, because of the higher activity of IGF-I in this assay. Recombinant human IGFBP-3 also inhibited IGF-activated glucose consumption, without affecting insulin-stimulated glucose consumption. The inhibitory effects of IGFBP-3 were greater for IGF-II than for IGF-I when IGFBP-3 was coincubated with either of the IGFs, at both IGF concentrations of comparable activity and equivalent molar concentrations. Thus, it became clear that the inhibitory effects of these IGFBPs on IGF biological action depended primarily upon their affinity for the specific IGF ligand and molar ratio of IGFBP/IGF peptide. Interestingly, when cells were pretreated with IGFBP-3, prior to the simultaneous addition of IGFs and IGFBP-3, the inhibitory effect was higher for IGF-I than for IGF-II. Either no effect or a minor inhibitory effect on IGF-activated glucose consumption was detected with IGFBP pretreatment alone. When the ED50 for inhibition of IGF action by IGFBPs in this in-vitro assay was compared with the physiological concentrations of IGFs and IGFBPs in normal human serum and in amniotic fluid, it was estimated that the IGFBP-1 concentration present in serum was not sufficient to modulate IGF action effectively while the concentration in amniotic fluid was enough for effective suppression. IGFBP-3 exhibited an ED50 low enough to suppress IGF-II and possibly IGF-I action when cells were pretreated with IGFBP-3. Thus, our data suggested that IGFBP-1 in amniotic fluid and IGFBP-3 in serum could be a potent inhibitor for IGF action. IGFBP-1 in serum, however, may not be able to function as a direct inhibitor under physiological conditions but, rather, may modulate IGF action together with other IGFBPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.