Abstract

We reported previously that various naphthoquinone derivatives inhibited cytochrome P450-dependent monooxygenase of liver and placenta microsomes [Muto, N. et al. (1987) Biochem. Biophys. Res. Commun. 146, 487-494]. To understand the complex inhibitory behaviors that were observed, it is desirable to study the relationship between structure and inhibitory activity of naphthoquinones in a simplified system containing a single P450 species. In the present study, the inhibitory effects of six derivatives of 1,4-naphthoquinone (hereafter referred to as NQ) on rat cytochrome P4501A1-dependent 7-ethoxycoumarin O-deethylation were examined using yeast microsomes containing overexpressed rat P4501A1. Of these, 2-methyl-5-hydroxy-NQ, 2-methyl-NQ, 2-hydroxy-NQ, and NQ showed competitive inhibition, whereas 5,8-dihydroxy-NQ and 5-hydroxy-NQ showed noncompetitive inhibition. Judging from the inhibitor constant (K(i)), the binding affinity of the four competitive inhibitors for the substrate-binding pocket of P4501A1 is in the order: 2-CH(3)-5-OH-NQ > 2-CH(3)-NQ > NQ >> 2-OH-NQ. On binding with P4501A1, 2-CH(3)-5-OH-NQ, 2-CH(3)-NQ, and NQ induced distinct Type II, Type I, and reverse Type I spectra, respectively. These results indicate that methyl and hydroxyl groups introduced into NQ have unique effects on their binding mode and binding affinity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call