Abstract

This study aimed to examine the inhibition of chlorogenic acid-grafted chitosan (CS-g-CA) on Pseudomonas fluorescens (P. fluorescens) and its biofilm. The minimum inhibitory concentration (MIC) of CS-g-CA against P. fluorescens was 1.25mg/mL. Alkaline phosphatase (AKP) leak assay and scanning electron microscopy (SEM) indicted that CS-g-CA causes structural damage to cell walls and membranes, resulting in the loss of function. In addition, CS-g-CA was able to disrupt the antioxidant system of P. fluorescens, interfere with energy metabolism, and interact with genomic DNA, affecting the normal physiological function of bacteria. It was also found that CS-g-CA inhibited the flagellar motility of P. fluorescens, which may be responsible for the inhibition of its biofilm formation. CS-g-CA at 2MIC was able to remove 71.64% of the mature biofilm and reduce the production of extracellular polysaccharides (EPS) by 60.72%. This was further confirmed by confocal laser scanning microscopy (CLSM), which showed a significant reduction in the amount of biofilm. In summary, CS-g-CA has strong antibacterial and anti-biofilm activities against P. fluorescens, and it can be applied as a potential seafood bacteriostatic agent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.