Abstract
A new concept for the inhibition of CGRP signalling has been developed by interaction with the CGRP molecule per se by using a CGRP antibody or a CGRP binding RNA-Spiegelmer (NOX-C89). We have compared these CGRP scavengers with two known receptor antagonists (CGRP8-37 and BIBN4096BS) on CGRP-induced relaxations in the rat middle cerebral artery (MCA). Furthermore, the role of the endothelial barrier has been studied. We used the luminally perfused MCA in an arteriograph, pressurized to 85 mm Hg and myograph studies of isolated ring segments of the MCA. In myograph studies and in the perfusion system during abluminal application, alphaCGRP and betaCGRP induced concentration-dependent dilatation of the MCA. Given luminally neither peptide was significantly vasodilator. Adrenomedullin and amylin induced weak dilatations. In myograph experiments, relaxation induced by alphaCGRP was prevented by the four CGRP blockers (CGRP8-37, BIBN4096BS, the CGRP antibody and NOX-C89.). In abluminal perfusion experiments, the relaxant response to alphaCGRP was prevented by these agents to a varying degree. Dilatation induced by abluminal application of alphaCGRP was inhibited by luminal CGRP8-37 but not by luminal BIBN4096BS, CGRP antibody or NOX-C89. alpha or betaCGRP acted on smooth muscle cell CGRP receptors in rat MCA and were effectively prevented from reaching these receptors by the endothelial barrier. The CGRP blockers significantly inhibited alphaCGRP induced relaxation but were also prevented from reaching the CGRP receptors by the arterial endothelium.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have