Abstract

The biofilm-forming ability of Listeria spp. is a concern to the food industry and health sectors. The aim of this study was to verify the inhibitory activity of bacteriocins produced by enterococci (Enterococcus faecium 20, 22 and 24 and Enterococcus faecalis 27) on developing biofilm and preformed biofilm of Listeria species. Bacteriocins were partially purified from cell free supernatant (CFS). L. monocytogenes 2032, L. innocua 2050 and L. ivanovii 2056 were selected to analyse the inhibitory effect of bacteriocins on biofilm biomass (crystal violet staining) and biofilm viability (XTT-reduction). The biomass of the developing and preformed biofilms of Listeria species were reduced (p < 0.05) in the presence of all bacteriocins tested. Overall, the reduction in biofilm biomass of developing biofilms was up to 87.4% for bacteriocin produced by E. faecium 22 (CFS22) against L. ivanovii and up to 87.1% for CFS22 against L. monocytogenes. These findings are in accordance with those observed in confocal microscopy analysis. Most of the CFS-containing bacteriocin (CFS22, CFS24, CFS27) were effective at decreasing the viability of biofilm cells from all Listeria species. The highest reduction in viability was observed for L. monocytogenes preformed biofilm cells (up to 98.7%), evidenced by fluorescence microscopy of propidium iodide-labelled cells. Scanning electron microscopy showed that cells of biofilm-treated bacteriocins displayed degenerative changes that may be indicative of cellular leakages. This study suggests that bacteriocins produced by enterococci have prospective applications to prevent biofilm formation and/or to reduce cell viability of formed biofilms of distinct Listeria species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call