Abstract

The Mycobacterium tuberculosis (Mtb) DosRST two-component regulatory system promotes the survival of Mtb during non-replicating persistence (NRP). NRP bacteria help drive the long course of tuberculosis therapy; therefore, chemical inhibition of DosRST may inhibit the ability of Mtb to establish persistence and thus shorten treatment. Using a DosRST-dependent fluorescent Mtb reporter strain, a whole-cell phenotypic high-throughput screen of a ∼540,000 compound small-molecule library was conducted. The screen discovered novel inhibitors of the DosRST regulon, including three compounds that were subject to follow-up studies: artemisinin, HC102A and HC103A. Under hypoxia, all three compounds inhibit Mtb-persistence-associated physiological processes, including triacylglycerol synthesis, survival and antibiotic tolerance. Artemisinin functions by disabling the heme-based DosS and DosT sensor kinases by oxidizing ferrous heme and generating heme-artemisinin adducts. In contrast, HC103A inhibits DosS and DosT autophosphorylation activity without targeting the sensor kinase heme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.