Abstract

Estrogen contributes to the development of breast cancer through estrogen receptor (ER) signaling and by generating genotoxic metabolites that cause oxidative DNA damage. To protect against oxidative stress, cells activate nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream cytoprotective genes that initiate antioxidant responses and detoxify xenobiotics. Nrf2 activation occurs by inhibiting the protein-protein interaction (PPI) between Nrf2 and its inhibitor Keap1, which otherwise targets Nrf2 for ubiquitination and destruction. In this study, we examined a series of novel direct inhibitors of Keap1-Nrf2 PPI in their role in promoting the availability of Nrf2 for antioxidant activity and attenuating estrogen-mediated responses in breast cancer. ER-positive human breast cancer cells MCF-7 were treated with 17β-estradiol (E2) in the presence or absence of selected Keap1-Nrf2 PPI inhibitors. Keap1-Nrf2 PPI inhibitors suppressed the mRNA and protein levels of estrogen responsive genes induced by E2 exposure, such as PGR. Keap1-Nrf2 PPI inhibitors caused significant activation of Nrf2 target genes. E2 decreased the mRNA and protein level of the Nrf2 target gene NQO1, and the Keap1-Nrf2 PPI inhibitors reversed this effect. The reversal of E2 action by these compounds was not due to binding to ER as ER antagonists. Further, a selected compound attenuated oxidative stress induced by E2, determined by the level of a biomarker 8-oxo-deoxyguanosine. These findings suggest that the Keap1-Nrf2 PPI inhibitors have potent antioxidant activity by activating Nrf2 pathways and inhibit E2-induced gene and protein expression. These compounds may serve as potential chemopreventive agents in estrogen-stimulated breast cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.