Abstract

Monoamine oxidases (MAOs) regulate neurotransmitters, and changes in their regulation lead to neurogenerative diseases (NDs). Therefore, MAO inhibitors are used to treat NDs. Ferulic acid, a phenolic compound found in various plant species, has been demonstrated to have a variety of biological functions, including anti-inflammatory, anticancer, and neuroprotective effects. In this study, ten ferulic acid hydrazide derivatives (FA1–FA10) were synthesized, and their ability to inhibit monoamine oxidase (MAO) enzymes was tested. Six candidates demonstrated a more pronounced pattern of inhibitory action against MAO-B than against MAO-A. FA3 had the highest inhibitory efficacy in MAO-B inhibition (IC50 value of 1.88 μM), followed by FA9 (2.08 μM). FA3 has a Ki of 1.92 ± 0.73 μM. A reversibility experiment of MAO-B inhibition by FA3 was conducted using dialysis, and the recovery pattern showed FA3 was a reversible MAO-B inhibitor with a similar recovery to safinamide, a reversible reference inhibitor. These results indicate that FA3 is an effective reversible MAO-B inhibitor. In molecular dynamics and docking, FA3 paired with pi-pi stacking helped stabilize the protein ligand in the active site of MAO-B. According to this study, lead compounds can be used as therapeutic agents to treat neurological conditions, such as Parkinson's disease (PD).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call