Abstract
Human hepatitis δ virus (HDV) poses a health threat in populations where chronic hepatitis B is endemic. It is a single-stranded RNA virus of 1700 nucleotides and both genomic and antigenomic sequences contain ribozymes which are important for viral replication. Using ribozyme constructs we show that several classes of antibiotics inhibit the self-cleavage reaction of the HDV ribozyme. Antibiotics of the aminoglycoside, peptide and tetracycline classes all inhibit HDV cleavage in vitroat micromolar concentrations. Neomycin (an aminoglycoside) inhibits HDV self-cleavage with a K Ivalue of 28 (±10) μM. Neomycin inhibition can be reversed by increasing magnesium ion concentration in a competitive manner. Lead acetate cleaves positions G76, A42 and G28, which surround the ribozyme cleavage site. Both Mg 2 +and neomycin prevent lead cleavage. Footprinting experiments using base-specific chemical probes revealed enhanced modifications of a set of bases by neomycin, overlapping with the above mentioned lead cleavages. These observations may indicate that neomycin directly displaces divalent metal ions essential for catalysis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have