Abstract

The inhibition of bromo- and extraterminal domains (BET) has shown an anti-proliferative effect in triple negative breast cancer (TNBC). In this article we explore mechanisms of resistance to BET inhibitors (BETi) in TNBC, with the aim of identifying novel ways to overcome such resistance. Two cellular models of acquired resistance to the BET inhibitor JQ1 were generated using a pulsed treatment strategy. MTT, colony formation, and cytometry assays revealed that BETi-resistant cells were particularly sensitive to PLK1 inhibition. Targeting of the latter reduced cell proliferation, especially in resistant cultures. Quantitative PCR analysis of a panel of mitotic kinases uncovered an increased expression of AURKA, TTK, and PLK1, confirmed by Western blot. Only pharmacological inhibition of PLK1 showed anti-proliferative activity on resistant cells, provoking G2/M arrest, increasing expression levels of cyclin B, pH3 and phosphorylation of Bcl-2 proteins, changes that were accompanied by induction of caspase-dependent apoptosis. JQ1-resistant cells orthotopically xenografted into the mammary fat pad of mice led to tumours that retained JQ1-resistance. Administration of the PLK1 inhibitor volasertib resulted in tumour regression. These findings open avenues to explore the future use of PLK1 inhibitors in the clinical setting of BETi-resistant patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.