Abstract
ObjectiveSyzygium australe (H.L. Wnddl. ex. Link) B. Hyland, Syzygium luehmannii (F. Muell.) L.A.S. Johnson, Syzygium jambos L. (Alston), Terminalia ferdinandiana Exell. and Tasmannia lanceolata (Poir.) A.C.Sm. are used in traditional Australian Aboriginal and Asian healing systems to treat a variety of pathogenic diseases including fungal skin infections, yet they are yet to be examined for the ability to inhibit the growth of human dermatophytes. Materials and methodsThe fungal growth inhibitory activity of extracts produced from selected Australian and Asian plants was assessed against a panel of human dermatophytes by standard disc diffusion and liquid dilution MIC methods. The toxicity of the extracts was evaluated by Artemia lethality and MTS HDF cell viability assays. The phytochemistry of the most promising extracts were examined by GC-MS headspace analysis and some interesting compounds were highlighted. ResultsThe aqueous and methanolic extracts of all plant species were good antifungal agents, inhibiting the growth of all of the dematophytes tested. The methanolic S. australe (SA) and S. luehmannii (SL) extracts were particularly potent fungal growth inhibitors. MIC values of 39 and 53μg/mL were recorded for the methanolic SL fruit extract against T. mentagrophytes and T. rubrum respectively. Similar MICs were also noted for the methanolic SL leaf extract (88 and 106μg/mL respectively). The methanolic SL leaf extract was a particularly good fungal growth inhibitor, with MIC values≤100μg/mL against the reference C. albicans strain (96μg/mL), E. floccosum (53μg/mL), and T. mentagrophytes (88μg/mL). This extract also produced MICs≤200μg/mL against all other fungal species/strains tested. Similarly good activity was seen for the methanolic S. australe leaf and fruit extracts, as well as the S. lehmannii fruit and S. jambos leaf extracts, with MIC values 100-500μg/mL. Interestingly, these extracts had low toxicity and high therapeutic indices, indicating their suitability for clinical use. GC-MS headspace analysis highlighted several monoterpenoids and sesquiterpenoids in the methanolic SA and SL extracts. T. ferdinandiana and T. lanceolata extracts also had promising antifungal activity, albeit with substantially higher MICs. ConclusionWhilst multiple extracts inhibited fungal growth, the methanolic S. australe and S. luehmannii leaf extracts and the S. luehmannii fruit extracts showed particularly potent activity against each of these dermatophytes, indicating that they are promising leads for the development of anti-dermatophytic therapeutics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.