Abstract

B cells responding to cognate Ag in vivo undergo clonal expansion that is followed by differentiation into Ab-secreting plasma cells or into quiescent restimulable memory. Both these events occur in the germinal center and require that cells exit from proliferation, but the signals that lead to one or the other of these mutually exclusive differentiation pathways have not been definitively characterized. Previous experiments have shown that signals transduced through the TNFRs CD27 and CD40 at the time of B cell stimulation in vitro or in vivo can influence this cell fate decision by inhibiting terminal differentiation and promoting memory. In this study, we show that the PIQED domain of the cytoplasmic tail of murine CD27 and the adapter molecule TNFR-associated factor 2 are involved in this effect. Using pharmacological inhibitors of signaling intermediates, we identify JNK as being necessary and sufficient for the observed inhibition of terminal differentiation. While JNK is involved downstream of CD40, inhibition of the MEK pathway can also partially restore plasma cell generation, indicating that both signaling intermediates may be involved. We also show that inhibition of induction of IFN regulatory factor 4 and B lymphocyte induced maturation protein 1 are downstream events common to both receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.