Abstract

Cultured rat cardiomyocytes were treated with 10, 20, and 30 mmol/L glucose and 30 mmol/L glucose plus protein kinase C (PKC) inhibitor, Chelerythrine. In the 20 and 30 mmol/L glucose-treated cells, taurine contents reduced by 15% and 27% ( P < .05), respectively, taurine transporter (TAUT) mRNA levels reduced by 47% and 64% ( P < .05), respectively, and cysteine sulfinate decarboxylase (CSD) mRNA reduced slightly, but not significantly. Time-dependent taurine uptakes reduced in the 10, 20, and 30 mmol/L glucose-treated cells, and time-dependent taurine release reduced in the 30 mmol/L glucose-treated cells. The V max of taurine transport decreased by 18%, 30%, and 35% ( P < .05) in the 10, 20, and 30 mmol/L glucose-treated cells, respectively, while K m of taurine transport remained unchanged. When PKC inhibitor, Chelerythrine, combined with 30 mmol/L glucose was treated with the cells, the lowered taurine content, taurine uptake, taurine release, and V max of taurine transport caused by 30 mmol/L glucose were eliminated. These results demonstrate that high glucose considerably and specifically decreases intracellular taurine content, taurine transport activity, and TAUT mRNA, possibly through PKC-mediated transcriptional and posttranslational pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.