Abstract

Cadmium (Cd) is an occupational and environmental pollutant, which mainly causes nephrotoxicity by damaging renal proximal tubular cells. To evaluate the effects of Cd on pyroptosis and the relationship between pyroptosis and apoptosis in duck renal tubular epithelial cells, the cells were cultured with 3CdSO4·8H2O (0, 2.5, 5.0, or 10.0μM Cd), N-acetyl-L-cysteine (NAC) (100.0μM), Z-YVAD-FMK (10.0μM) or the combination of Cd and NAC or Z-YVAD-FMK for 12h, and then cytotoxicity was assessed. The results evidenced that Cd significantly increased the releases of interleukin-18 (IL-18) and interleukin-1β (IL-1β), lactate dehydrogenase (LDH) and nitric oxide (NO), relative conductivity and cellular reactive oxygen species (ROS) level. Simultaneously, Cd also markedly upregulated NLRP3, Caspase-1, ASC, NEK7, IL-1β and IL-18 mRNA levels and NLRP3, Caspase-1 p20, GSDMD and ASC protein levels. Additionally, NAC notably improved the changes of above indicators induced by Cd. Combined treatment with Cd and Z-YVAD-FMK remarkably elevated Bcl-2 mRNA and protein levels, inhibited p53, Bax, Bak-1, Cyt C, Caspase-9 and Caspase-3 mRNA levels and p53, Bax, Bak-1, Caspase-9/cleaved Caspase-9 and Caspase-3/cleaved Caspase-3 protein levels, increased mitochondrial membrane potential (MMP), decreased apoptosis ratio and cell damage compared to treatment with Cd alone. Taken together, Cd exposure induces duck renal tubular epithelial cell pyroptosis through ROS/NLRP3/Caspase-1 signaling pathway, and inhibiting Caspase-1 dependent pyroptosis attenuates Cd-induced apoptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call