Abstract

Cadmium (Cd) is a well studied nephrotoxic metal element. To investigate the effects of Cd-induced cytotoxicity on oxidative stress-mediated apoptosis in primary renal tubular epithelial cells of duck. Shaoxing duck (Anas platyrhyncha) renal tubular epithelial cells were cultured in medium in absence and presence of 3CdSO4·8H2O (1.25, 2.5, 5.0 μM Cd), in N-acetyl-l-cysteine (NAC) (100 μM), and the combination of Cd and NAC for 12 h. After 12 h exposure, morphologic observation and function, reactive oxygen species (ROS) level, antioxidant indices, the activity of ATPase, intracellular pH and [Ca2+]i, mitochondrial membrane potential (MMP), and apoptosis-related genes mRNA were determined. The results showed that Cd exposure could induce release of intracellular lactate dehydrogenase (LDH), simultaneously, enhance the ROS generation, acidification, malondialdehyde (MDA) and [Ca2+]i, decrease glutathione (GSH), Na+, K+-ATPase, Ca2+-ATPase, catalase (CAT), superoxide dismutase (SOD), total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-Px) activities as well as MMP, upregulated Bak-1, Bax and Caspase-3 mRNA expression, inhibited Bcl-2 mRNA expression, and induced cell apoptosis. The toxicity of Cd to cells showed a dose-dependent manner. Antioxidant NAC could efficiently alleviate Cd-induced the cytotoxicity. Taken together, these results suggest that Cd exposure cause cytotoxicity through oxidative stress-mediated apoptosis pathway in duck renal tubular epithelial cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.