Abstract

Islet regeneration is stimulated after transplantation of human umbilical cord blood (UCB) hematopoietic progenitor cells with high aldehyde dehydrogenase (ALDH)-activity into NOD/SCID mice with streptozotocin (STZ)-induced β cell ablation. ALDHhi progenitor cells represent a rare subset within UCB that will require expansion without the loss of islet regenerative functions for use in cell therapies. ALDHhi cells efficiently expand (>70-fold) under serum-free conditions; however, high ALDH-activity is rapidly diminished during culture coinciding with emergence of a committed megakaryocyte phenotype CD41+/CD42+/CD38+. ALDH-activity is also the rate-limiting step in retinoic acid (RA) production, a potent driver of hematopoietic differentiation. We have previously shown that inhibition of RA production during 9-day cultures, using diethylaminobenzaldehyde (DEAB) treatment, enhanced the expansion of ALDHhi cells (>20-fold) with vascular regenerative paracrine functions. Herein, we sought to determine if DEAB-treatment also expanded ALDHhi cells that retain islet regenerative function following intrapancreatic transplantation into hyperglycemic mice. After DEAB-treatment, expanded ALDHhi cell subset was enriched for CD34+/CD38- expression and demonstrated enhanced myeloid multipotency in vitro compared to the ALDHlo cell subset. Unfortunately, DEAB-treated ALDHhi cells did not support islet regeneration after transplantation. Conversely, expanded ALDHlo cells from DEAB-treated conditions reduced hyperglycemia, and increased islet number and cell proliferation in STZ-induced hyperglycemic NOD/SCID mice. DEAB-treated ALDHlo cells were largely committed to a CD41+/CD42+ megakaryocyte phenotype. Collectively, this study provides preliminary evidence that committed cells of the megakaryocyte-lineage support endogenous islet regeneration and/or function, and the retention of high ALDH-activity did not coincide with islet regenerative function after expansion under serum-free culture conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call