Abstract

Rat liver cyclic AMP-dependent protein kinase catalytic subunit (cAK), assayed using the synthetic peptide substrate, LRRASLG, is inhibited by a range of plant-derived flavonoids. In general, maximal inhibitory effectiveness (IC50 values 1 to 2 microM) requires 2,3-unsaturation and polyhydroxylation involving at least two of the three flavonoid rings. 3-Hydroxyflavone (IC50 value 4 microM), 3,5,7,2',4'-pentahydroxyflavone (IC50 = 10 microM) and 5,7,4'-trihydroxyflavone (IC50 = 7 microM) represent somewhat less active variations from this pattern. Flavonoid O-methylation or O-glycosylation greatly decreases inhibitory effectiveness, as does 2,3-saturation. Various flavonoid-related compounds, notably gossypol (IC50 = 10 microM), also inhibit cAK. Flavonoids and related compounds are in general much better inhibitors of cAK than of avian Ca(2+)-calmodulin-dependent myosin light chain kinase or of plant Ca(2+)-dependent protein kinase. Tricetin (IC50 = 1 microM) inhibits cAK in a fashion that is non-competitive with respect to both peptide substrate and ATP (Ki value 0.7 microM). When histone III-S is used as a substrate, inhibition of cAK requires much higher flavonoid concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.