Abstract

Protein methylation is a prevalent post-translational modification after cerebral ischemia. Protein arginine methyltransferase 5 (PRMT5) is a type of methyltransferase enzyme that can catalyse the formation of methylated residues on histones and non-histone proteins. Accumulating evidence suggested that PRMT5 might play a carcinogenic role in various cancers. However, the role of PRMT5 in cerebral ischaemia/reperfusion (I/R) injury remains unclear. In this project, middle cerebral artery occlusion/reperfusion (MCAO/R) model in mice and oxygen-glucose deprivation/reoxygenation (OGD/R) model in human neuroblastoma SH-SY5Y cells were utilized to mimic disease state of cerebral I/R. We found that expression of inflammatory-related factors [Interleukin (IL)-1β and IL-6)] and pyroptotic-related factor [N-term cleaved Gasdermin-D (GSDMD-N)] were up-regulated in both MCAO/R mice and OGD/R SH-SY5Y cells. In addition, both in vivo and in vitro, PRMT5 was aberrantly upregulated during cerebral I/R. However, these alterations induced by I/R were blocked by PRMT5 inhibitor LLY-283, and enhanced by overexpression of PRMT5. Furthermore, rescue experiment proved that PRMT5 plays a pro-inflammatory and pro-pyroptotic role by activating nuclear factor kappa B (NF-κB)/nucleotide-binding oligomerization domainlike receptor pyrin domain containing 3 (NLRP3) axis. Finally, we observed that treatment of LLY-283 alleviated neurological deficits and reduced infarct volume in the MCAO/R mice. Taken together, PRMT5 may be a potential therapeutic target for cerebral I/R injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call