Abstract

Hyporeactivity of vessels to constrictor agents is thought to contribute to cardiovascular decompensation following trauma-hemorrhage and resuscitation. In this study, we determined if inhibition of poly(ADP-ribose) synthetase (PARS) activity prevented the development of vascular hyporeactivity in rats following trauma-hemorrhage and resuscitation. Trauma consisted of a laparotomy that was closed and rats were hemorrhaged into a reservoir containing citrate to 40 mm Hg for 90 min. Resuscitation included 2/3 of the shed blood plus 2 1/3 of the shed volume as Ringer's lactate. Sham animals received the laparotomy and were time-matched. Induction of iNOS was assessed by reverse transcription-polymerase chain reaction (RT-PCR). Aortic rings isolated 6 h after the initiation of hemorrhage (4.5 h after resuscitation) showed decreased responsiveness to norepinephrine (peak developed tension 0.31+/-0.01 g/mg tissue) compared with sham rings (0.43+/-0.02 g/mg tissue), but no change in EC50 for this response (approximately 5x10(-8) M). Addition of the PARS inhibitor, 3-aminobenzamide, at the onset of resuscitation prevented the decrease in response of aortic rings. The addition of the structural analogue, 3-aminobenzoic acid, which does not inhibit PARS, did not prevent the decrease in vascular reactivity. These agents did not alter vascular responses to norepinephrine in sham animals. iNOS induction was not associated with depressed contractile function. These results indicate that decreased vascular reactivity was prevented by inhibition of PARS and that PARS activation was independent of iNOS induction following trauma-hemorrhage and resuscitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.