Abstract

The generation of reactive oxygen species (ROS) has been implicated in the pathogenesis of renal ischemia-reperfusion injury. ROS produce DNA strand breaks that lead to the activation of the DNA-repair enzyme poly (ADP-ribose) synthetase (PARS). Excessive PARS activation results in the depletion of its substrate, nicotinamide adenine dinucleotide (NAD) and subsequently of adenosine 5'-triphosphate (ATP), leading to cellular dysfunction and eventual cell death. The aim of this study was to investigate the effect of various PARS inhibitors on the cellular injury and death of rat renal proximal tubular (PT) cells exposed to hydrogen peroxide (H2O2). Rat PT cell cultures were incubated with H2O2 (1 mM) either in the presence or absence of the PARS inhibitors 3-aminobenzamide (3-AB, 3 mM), 1,5-dihydroxyisoquinoline (0.3 mM) or nicotinamide (Nic, 3 mM), or increasing concentrations of desferrioxamine (0.03 to 3 mM) or catalase (0.03 to 3 U/ml). Cellular injury and death were determined using the MTT and lactate dehydrogenase (LDH) assays, respectively. H2O2-mediated PARS activation in rat PT cells and the effects of PARS inhibitors on PARS activity were determined by measurement of the incorporation of [3H]NAD into nuclear proteins. Incubation of rat PT cells with H2O2 significantly inhibited mitochondrial respiration and increased LDH release, respectively. Both desferrioxamine and catalase reduced H2O2-mediated cellular injury and death. All three PARS inhibitors significantly attenuated the H2O2-mediated decrease in mitochondrial respiration and the increase in LDH release. Incubation with H2O2 produced a significant increase in PARS activity that was significantly reduced by all PARS inhibitors. 3-Aminobenzoic acid (3 mM) and nicotinic acid (3 mM), structural analogs of 3-AB and Nic, respectively, which did not inhibit PARS activity, did not reduce the H2O2-mediated injury and necrosis in cultures of rat PT cells. We propose that PARS activation contributes to ROS-mediated injury of rat PT cells and, therefore, to the cellular injury and cell death associated with conditions of oxidant stress in the kidney.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.