Abstract

We present an in situ study of the interaction of osteopontin (OPN) peptide-bearing solutions with brushite (DCPD), CaHPO4·2H2O, (010) surfaces using atomic force microscopy. We show that in situ observations of the [100]Cc step kinetics are consistent with classic Cabrera-Vermilyea model of step pinning combined with adsorption dynamics of phosphorylated OPN peptides, highlighting the effects of supersaturation and peptide concentration on step movement and pinning as a mechanism of inhibitor action. In addition to a kinetic effect, the presence of phosphorylated OPN, preferentially binding to the [100]Cc steps, may alter mineral interfacial energies, thus delaying the formation of active steps during growth. This is consistent with the bulk nucleation observations. Furthermore, the phosphorylation-deficient form of this segment fails to inhibit DCPD crystallization. These in vitro results may reveal that the dual control of step kinetics and interfacial energy by phosphorylated OPN peptides may have m...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.