Abstract

Neurodegenerative diseases and cancers are considered to be two families of diseases caused by completely opposite cell-death mechanisms: the former caused by premature cell death, with the latter due to the increased resistance to cell death. Growing epidemiologic evidence appear to suggest an inverse correlation between neurodegenerative diseases and cancers. However, pathological links, particularly from a protein-cell interaction perspective, between these two families of diseases remains to be proven. Here, a fundamental study investigates the effects of three amyloid proteins of Aβ (associated with AD), hIAPP (associated with T2D), and hCT (associated with MTC) on pancreatic cancer (PANC-1) cells. Collective results demonstrate a general inhibitory activity of all of three amyloid proteins on cancer cell proliferation, but inhibition efficiencies are strongly dependent on amyloid sequence (Aβ, hIAPP, hCT), concentration (IC25, IC50, IC75), and aggregation states (monomers, oligomers). Amyloid proteins exhibit two pathways against cancer cells: amyloid monomer-induced ROS production to inhibit cell growth and amyloid oligomer-induced membrane disruption to kill cells. Collectively, the results demonstrate a general inhibition function of amyloid proteins to induce cancer cell death by preventing cell proliferation, suppressing cell migration, promoting reactive oxygen species production, and disrupting cell membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.