Abstract

4-Nitrobenzylthioinosine (NBTI, 1) is a well-known inhibitor for the nucleoside transport protein ENT1. However, its highly polar nature is unfavorable for oral absorption and/or penetration into the CNS. In the search for compounds with lower polarity than NBTI we replaced its ribose moiety by substituted benzyl groups. Halogen, hydroxyl, (trifluoro)methyl(-oxy), nitro, and amine functionalities were among the substituents at the benzyl group. In general, substitution of the benzyl group resulted in a lower affinity for ENT1. Only 2-hydroxyl substitution showed a higher affinity. Most likely this is the result of hydrogen bonding. Substitution at the 2-position of the benzyl group with aryl groups was also addressed. Compared to parent compound carrying a 2-phenylbenzyl group, all synthesized analogues gave higher affinities. Introduction of fluoro, trifluoromethyl, methoxy, and hydroxyl groups at the phenyl group clearly showed that addition to the 4-position was preferable. Despite the highly different character of a ribose and a benzyl group, Ki values in the low nanomolar range were obtained for the benzyl-substituted derivatives. Compound 35, LUF5919, and compound 60, LUF5929, displayed the highest affinity (Ki = 39 nM for both compounds), having a polar surface area of 101 A2 and 85 A2, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.