Abstract

Experiments with two maize (Zea mays L.) hybrids were conducted to determine (a) if the inhibition of nitrate uptake by aluminium involved a restriction in the induction (synthesis/assemblage) of nitrate transporters, and (b) if the magnitude of the inhibition was affected by the concurrent presence of ambient ammonium. At pH 4.5, the rate of nitrate uptake from 240 μM NH4NO3 was maximally inhibited by 100 μM aluminium, but there was little measurable effect on the rate of ammonium uptake. Presence of ambient aluminium did not eliminate the characteristic induction pattern of nitrate uptake upon first exposure of nitrogen-depleted seedlings to that ion. Removal of ambient aluminium after six hours of induction resulted in recovery within 30 minutes to rates of nitrate uptake that were similar to those of plants induced in absence of aluminium. Addition of aluminium to plants that had been induced in absence of aluminium rapidly restricted the rate of nitrate uptake to the level of plants that had been induced in the presence of aluminium. The data are interpreted as indicating that aluminium inhibited the activity of nitrate transporters to a greater extent than the induction of those transporters. When aluminium was added at initiation of induction, the effect of ambient ammonium on development of the inhibition by aluminium differed between the two hybrids. The responses indicate a complex interaction between the aluminium and ammonium components of high acidity soils in their influence on nitrate uptake. ei]{gnA C}{fnBorstlap}

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.