Abstract
Myotonic dystrophy (DM) is an autosomal dominant disorder causing myotonia, progressive muscle weakness, and endocrine abnormalities including hypothalamic-pituitary-adrenal (HPA) axis hyperresponsiveness to CRH-mediated stimuli. This ACTH hyperresponsiveness appears directly related to the underlying genetic abnormality. Naloxone (Nal)-mediated CRH release causes ACTH release in normal humans and an ACTH hyperresponse in DM. Alprazolam (APZ) attenuates the ACTH release in response to Nal in normal individuals, probably by inhibiting CRH release. This study investigates the effects of APZ on Nal-induced HPA axis stimulation in DM. The ACTH response to Nal in DM subjects was significantly reduced by APZ. Despite this DM patients have a relative resistance to APZ inhibition of Nal-induced ACTH/cortisol release. APZ caused a smaller percentage reduction in AUC for ACTH in DM compared with controls. These findings provide further insight into the mechanism(s) of the HPA axis abnormalities in DM. In DM, there may be an increase in tonic opioid inhibition to CRH release with compensatory increases in stimulatory pathways. Alternatively, these patients may have a basal increase in pituitary vasopressin levels or an enhanced AVP/CRH synergistic mechanism at the level of the corticotroph.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have