Abstract

p-Bromophenacyl bromide (PBPB), quinacrine and indomethacin, which inhibit phospholipase A2 (PLA2; EC 3.1.1.4) activity in several tissues, caused a dose-dependent inhibition of prelabelled [3H]noradrenaline ([3H]NA) release evoked by high concentrations of K+ from rat cerebral cortical synaptosomes. Release of prelabelled [3H]NA was caused by natural lysophosphatidic acid (LPA; 10(-6)-10(-5) g mL-1) and lysophosphatidylcholine (LPC; 10(-6)-10(-5) g mL-1) and synthetic LPA (6 x 10(-6), 2 x 10(-5) M) and LPC (6 x 10(-6), 2 x 10(-5) M), but not by natural lysophosphatidylserine (LPS; 10(-5) g mL-1), lysophosphatidylethanolamine (LPE; 10(-5) g mL-1) and lysophosphatidylinositol (LPI; 10(-5) g mL-1). The release evoked by natural LPA and LPC could be inhibited only marginally by PBPB and quinacrine. Phosphatidic acid (PA)-specific and phosphatidylcholine (PC)-specific PLA2 activities from rat cerebral cortical synaptosomes were stimulated in incubation medium containing high concentrations of K+ or calcium ionophore A23187. Low concentrations of PLA2 (10(-6)-10(-8) g mL-1, from bee venom) inhibited the synaptic membrane Na+,K+-ATPase activity in incubation media with intracellular levels of free Ca2+. Several lysophospholipids (LPLs), metabolites of the PLA2 type, also inhibited the synaptic membrane Na+,K+-ATPase activity in a dose-dependent manner. The minimum effective concentrations of natural LPA, LPC, LPS, LPI and LPE were 10(-6), 4.7 x 10(-6), 10(-5), 4.7 x 10(-5) and 4.7 x 10(-5) g mL-1, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call