Abstract

The Msh2-Msh6 heterodimer plays a key role in the repair of mispaired bases in DNA. Critical to its role in mismatch repair is the ATPase activity that resides within each subunit. Here we show that both subunits can simultaneously bind ATP and identify the Msh6 subunit as containing the high-affinity ATP binding site and Msh2 as containing a high-affinity ADP binding site. Stable binding of ATP to Msh6 causes decreased affinity of Msh2 for ADP, and binding to mispaired DNA stabilized the binding of ATP to Msh6. Our results support a model in which mispair binding encourages a dual-occupancy state with ATP bound to Msh6 and Msh2; this state supports hydrolysis-independent sliding along DNA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.